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1. Presentation

The Master in Mathematical Physics “Math4Phys” is a graduate program offered by the
Department of Mathematics of the Université Bourgogne Europe (UBE), formerly Université de
Bourgogne. The program is hosted at the Institut de Mathématiques de Bourgogne (IMB) in
Dijon.

The program’s primary objective is to provide advanced training in the mathematical methods
of modern theoretical physics within a structured mathematical curriculum.

Such an offer exists in France only in Dijon, where the Mathematical Physics group at the
IMB provides a unique environment for a program requiring expertise in both Mathematics and
Physics.

The Mathematical Physics group of the IMB laboratory in Dijon is a distinguished research
team in France with the ability to provide advanced lectures on the mathematical problems of
modern physics.

2. Contacts

Program website: math.ube.fr/math4phys

General inquiries: math4phys@ube.fr

Address:
Institut de Mathématiques de Bourgogne, UMR CNRS 5584,
9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France

Secretariat:
Mylène MONGIN – secretariat.maths@ube.fr

International Masters coordinator (International students support):
Eloïse ROUSSEL – eloise.roussel@ube.fr

Program coordinators:
Guido CARLET – M1 – office A415 – guido.carlet@ube.fr
José Luis JARAMILLO – M1 – office A323 – jose-luis.jaramillo@ube.fr
Nikolai KITANINE – M2 – office A405 – nikolai.kitanine@ube.fr

3. Application, enrolment, and other useful information

For detailed information on application and enrollment procedures in English, please visit:
en.u-bourgogne.fr/admission/degree-seeking-students.html

All applications must be submitted exclusively via the eCandidat platform:
ecandidat.u-bourgogne.fr/

4. Scholarships

Each year, the Master’s program awards several scholarships of approximately 550 euros per
month for up to nine months, based exclusively on academic merit. The number of scholarships
depends on secured funding, which may vary annually. All students accepted in M1 and M2
are automatically considered, no separate application is required. Scholarship recipients must
confirm their participation within two weeks of receiving the offer.
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5. Calendar 2025/26

Some dates are yet to be confirmed.

Applications begin 10/2/2025
Applications end 25/5

First meeting for M1 students 15/9
First meeting for M2 students 15/9

Toussaint ∗ 26/10 – 4/11
Courses end 20/12

Noël 21/12 – 6/1
Exams 6/1 – 10/1

Courses begin 13/1/2026
Hiver 22/2 – 3/3
Printemps 19/4 – 5/5

Courses end 9/5
Dissertation deadline 20/5
Exams, 1st session 12/5 – 16/5
Exams, 2nd session 16/6 – 27/6

* In italics the teaching breaks.

6. Courses M1

We propose nine main courses plus a language course and a dissertation. Each course (apart
from the language course) consists of 22 hours of lectures (CM) and 22 hours of exercise classes
(TD). For French-speaking students, the FLE course will be replaced by an English course.

CM+TD (hrs) ECTS

Groups and representations 22+22 7
Differential geometry 22+22 7
Functional analysis 22+22 7
Differential equations in the complex domain 22+22 7
FLE (or English) 0+20 2

Mathematical methods of classical mechanics* 22+22 6
Quantum mechanics for mathematicians* 22+22 6
Partial differential equations* 22+22 6
Computational methods in mathematical physics* 22+22 6
Statistical mechanics and stochastic processes* 22+22 6
Dissertation 6

* Students must choose 4 out of the 5 available courses.

The schedule of the courses will be accessible via the ENT website of the Université Bourgogne
Europe at the address: ent.u-bourgogne.fr

All courses are taught by members of the IMB in Dijon, unless otherwise noted. Other affiliations
include the Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB).
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Groups and representations (P. Schauenburg, S. Carrozza)
Notion of a group representation. Development of the structure theory for complex representations
of finite groups: Theorems of Maschke and Schur. Tensor products and duality. Character theory.
Induced representations. Some outlook beyond finite groups as time permits.

Differential geometry (R. Uribe-Vargas, M. Fairon)
Differentiable manifolds. Vector fields and flow-box theorem. Differential forms and Stokes’ theorem.
Tensors and vector bundles. Riemannian manifolds and connections. Geometry of gauge fields.

Functional analysis (G. Dito, T. Chambrion)
1. Basic notion on topology. Compacts spaces, bounded linear maps on normed spaces. Compact
and complete spaces. 2. Hilbert spaces. Projection theorem. Hilbertian orthonormal basis. Riesz
representation theorem. Applications to Fourier series. Fejér theorem. 3. Linear operators on a Hilbert
space. General theory of operators. Adjoint of an operator. Closed, self-adjoint, symmetric, unitary,
normal operators. Application to differential operators. 4. Spectral theory. Basic concepts: point,
continuous, and residual spectra. Resolvent operator. 5. Spectral theorem for compact operators.
Applications to integral equations. Spectral theorem for bounded self-adjoint operators.

Differential equations in the complex domain (G. Carlet, N. Kitanine)
ODEs in the real domain: elementary methods, existence and uniqueness theorems (Cauchy-Peano,
Picard-Lindelöf), linear systems. ODEs in the complex domain: scalar equations of the first and
second order, systems, Riccati equation; complex linear systems, monodromy and singularities, Fuchsian
systems, Bessel equation, hypergeometric equation; irregular singularities, Stokes matrices.

Mathematical methods of classical mechanics (G. Carlet, J. L. Jaramillo)
Lagrangian and Hamiltonian formalisms. Hamiltonian systems on symplectic manifolds. Variational
principle and Hamilton-Jacobi equations. Poisson manifolds. Symmetries and momentum map.

Quantum mechanics for mathematicians (N. Kitanine, S. Leurent)
1. Introduction: 1.1 Observables in classical mechanics 1.2. Finite dimensional model of quantum
mechanics 2. Basic principles of quantum mechanics: 2.1 States and observables in quantum mechanics
2.2 Quantum entanglement 2.3 Heisenberg uncertainty principle 2.4 Coordinate and momentum rep-
resentations 2.6 Quantum dynamics: Schrödinger and Heisenberg pictures 2.5 Schrödinger equation
2.6 Classical limit 3. Quantum mechanics in one dimension: 3.1 Harmonic oscillator. Creation and
annihilation operators 3.2 Scattering problem in one dimension 4. Quantum mechanics in 3D: 4.1 Free
particle 4.2 Rotation group and angular momentum 4.3 Hydrogen atom 4.4 Spin 5. Multi-particle
quantum systems, introduction.

Partial differential equations (J. Lampart – ICB)
This course is an introduction to linear partial differential equations and relevant concepts from
functional analysis. Tempered distributions; Fourier transform; Sobolev spaces; PDE with constant
coefficients. Hilbert spaces; Bounded operators, linear functionals; Lax-Milgram Theorem and elliptic
equations. Unbounded Operators; Self-adjoint and maximal dissipative operators; Evolution equations
and the Hille-Yosida Theorem. Applications to the heat, wave and Schrödinger equations with potentials
and variable coefficients.
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Computational methods in mathematical physics (N. Stoilov)
Interpolation and/or Linear systems. Numerical integration (classical rules, Gaussian quadrature rules).
Fourier approximation. Numerical methods for solving ODE and PDE.

Statistical mechanics and stochastic processes (J. L. Jaramillo, S. Fang)
Statistical mechanics: 1. Thermodynamics formalism. 2. Classical Statistical Mechanics and Ergodic
Hypothesis. 3. Statistical Ensembles (and Large Deviation Theory). 4. Phase transitions, Ising
model, renormalization group. 5. Non-equilibrium statistical mechanics: Onsager reciprocity and
fluctuation-dissipation theorem. Stochastic processes: 6. Probability concepts. 7. Brownian motion
and diffusion. 8. Ito calculus and stochastic differential equations. 9. The Fokker-Planck equation. 10.
Detailed balance: Onsager relations and fluctuation-dissipation theorem (revisited).

7. Courses M2

There are eight main courses plus a course of languages and a dissertation. Three courses will
focus on the specific theme of the year. For French-speaking students the course FLE will be
replaced by a course of English.

CM+TD (hrs) ECTS

Lie groups and Lie algebras 18+18 7
Mathematical methods of quantum field theory 18+18 7
Riemann surfaces and integrable systems 18+18 7
Introduction to algebraic geometry* 15+15 7
FLE (or English) 0+20 2

Path integral approach in QFT 15+15 5
General relativity 15+15 5
Cohomology of algebraic varieties* 15+15 5
Introduction to Hilbert schemes and moduli spaces* 15+15 5
Dissertation 10

* Thematic courses.

The schedule of the courses will be accessible via the ENT website of the Université Bourgogne
Europe at the address: ent.u-bourgogne.fr

All courses are taught by members of the IMB.

7.1. Curricular courses.

Lie groups and Lie algebras (G. Dito)
1. Lie algebras: Basic definitions. Ideals and Lie subalgebras. Lie theorems. Real and complex
forms. Universal enveloping algebra. Poincaré-Birkhoff-Witt theorem. Campbell-Hausdorff formula. 2.
Structure of Lie algebras: Solvable, nilpotent and semisimple Lie algebras. Killing form. Lie and Engel
theorems. Cartan criterion. Jordan decomposition. 3. Semisimple Lie algebras: Cartan subalgebra.
Root system. Dynkin diagram. Classification of simple Lie algebras. Finite dimensional representations
of sl(2).

Mathematical methods of quantum field theory (N. Kitanine)
1. Introduction, necessary background in mathematics and physics: distribution theory, functional
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analysis (spectral theorem), Lagrangian and Hamiltonian mechanics, basic principles of quantum
mechanics, special relativity (Lorentz group and corresponding Lie algebra). 2. Classical field theory:
Lagrangian formulation, conservation laws, Noether theorem for fields, examples (Klein-Gordon equa-
tion, sine-Gordon equation, non-linear Schrodinger equation, Maxwell equations etc.). Hamiltonian
formulation, Poisson brackets. 3. Canonical quantisation of the free bosonic field: Weyl algebra, Fock
space for bosons, lattice bosons, finite volume, infinite volume limit. Free bosons in 3+1 d. 4. Spinor
representation of the Lorentz group and Dirac equation. Canonical quantization: Clifford algebra,
Fock space for fermions: lattice fermions, finite volume, infinite volume limit. Free fermions in 3+1
d. 5. Introduction to the interacting field theories: Interaction picture, Dyson formula, Wick theorem,
Feynman diagrams. 6. (if there is time) Introduction to quantum integrability.

Riemann surfaces and integrable systems (G. Carlet)
Definition of Riemann surface and basic examples, plane algebraic curves, hyperelliptic curves, holo-
morphic coverings, fundamental group, Riemann-Hurwitz theorem, homology groups, sheaves, Cech
and sheaf cohomology, meromorphic functions, abelian differentials, integration theorems, divisors,
Abel-Jacobi map, Abel theorem, Riemann-Roch theorem, Serre duality.

Path integral approach in QFT (T. Kimura)
Lagrangian formalism and symmetry. Path integral formalism. Interacting fields and perturbation
theory. Loop correction and renormalization. Quantization of non-Abelian gauge theory. Spontaneous
symmetry breaking.

General relativity (S. Carrozza, B. Raffaelli)
The bulk of the course will focus on basic aspects of General Relativity. Outline: 1. Minkowski
spacetime: special relativity, proper time, metric, causal structure and conformal compactification,
energy-momentum tensor. 2. Geometry of curved spacetimes: manifolds, tensor fields, Lie derivative, co-
variant derivatives, Levi-Civita connection, curvature, geodesics. 3. Einstein’s field equations: (heuristic)
derivation, Lovelock theorem, linearized gravity, Newtonian limit. 4. Particular solutions of Einstein’s
equations: Schwarzschild black hole, cosmological solutions, and their singularities. Time-permitting,
we will explore the concept of spacetime singularity in more depth, by reviewing more advanced notions
such as: congruences of curves, the Raychaudhuri equation, energy conditions, and singularity theorems.

7.2. Thematic courses.

Each year the master proposes thematic courses on a specific theme.

Year Theme

2024-25 Introduction to quantum topology
2025-26 Algebraic geometry
2026-27 Probabilistic analysis in mathematical physics

See Appendix for the thematic courses of the past years.

7.2.1. Thematic courses 2025-26.

For the year 2025-26 the theme is “Algebraic geometry”.
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Introduction to algebraic geometry (L. Moser-Jauslin)
This course will concentrate on the study of affine and projective complex varieties. In the first
part, we will discuss the correspondence between varieties and their rings of functions. We will prove
Hilbert’s Nullstellensatz, study its consequences and use commutative algebra to study varieties. We
will introduce the Zariski topology, and study its relationship to the usual topology of complex varieties.
After considering affine varieties, we will then concentrate on the case of projective curves. We will
consider geometric and topological properties of algebraic varieties. We will start with elementary
properties, such as smoothness and tangent spaces, and then later consider more involved notions such
as intersections and also the genus of smooth projective curves.

Cohomology of algebraic varieties (J. Nagel)
The aim of this course is to discuss several topics related to the cohomology of complex projective
algebraic varieties. We start out with singular cohomology and de Rham cohomology, and then move on
to discuss the implications of a complex structure on the cohomology: Dolbeault cohomology and the
Hodge decomposition theorem. In the last part of the course we study applications to mirror symmetry.
To this end, we need orbifolds (varieties that locally look like the quotient of a smooth variety by a
finite group action) and Chen-Ruan cohomology, a cohomology theory that reflects the orbifold structure.

Introduction to Hilbert schemes and moduli spaces (D. Faenzi)
This course is intended as an introduction to moduli spaces in algebraic geometry, through the guiding
example of Hilbert schemes of points on a surface.

1. Moduli functors, Hilbert schemes. We will introduce the functorial approach to moduli problems,
specify it to the case of Hilbert schemes and review some basic results on Hilbert schemes of n
points on a smooth algebraic surface. We will see that this is a smooth and irreducible variety
of dimension 2n, that admits a natural birational morphism to the symmetric n-th power of
the surface, which is actually a resolution of singularities.

2. Higher rank moduli spaces. This part is devoted to the study of moduli spaces of framed
sheaves on the projective plane and the associated ADHM data. This relies on the concept of
moduli space of vector bundles with a notion of stability, which in this case will be played by
a framing along a line at infinity. We will see how to describe such moduli spaces explicitly
via the Beilinson spectral sequence and the so-called ADHM data, which is to say a set of
linear maps satisfying commuting relations and a stability condition, which are tantamount to
a representation of a certain quiver.

3. Hyper-Kähler and symplectic structure. Here we will review how Hilbert schemes of points
on the affine plane inherit a structure of an affine Hyper-Kähler manifold and how this is
related to moment maps. On one hand, we will review basic material on Geometric Invariant
Theory and on the other hand we will develop a bit the theory of symplectic quotients to show
that the moduli spaces obtained by GIT in the previous chapter can actually be described as
Hyper-Kahler quotiens.

4. Betti numbers. If time allows, we will get a glimpse of the co-called instanton counting, which
is to say, computing the Betti numbers of the moduli spaces seen so far, notably the Hilbert
scheme of points on a surface, and study how these numbers obey interesting combinatorial
formulas related to partition functions.
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7.2.2. Thematic courses 2026-27.

For the year 2025-26 the theme is “Probabilistic analysis in mathematical physics”.

Stochastic processes (S. Herrmann)
This is a second-level course on stochastic processes. A number of basic notions have already been
introduced in the first year of the Master’s program (”Statistical Mechanics and Stochastic Processes”)
and will form the building blocks of this advanced course. In particular, the notion of diffusion and
the link with the Fokker-Planck equation are introduced in the first year. This advanced course in
probability theory offers another approach essentially based on the theory of martingales.

1. In a first part, we introduce the notion of conditioning and develop the theory of martingales,
taking care to illustrate the theoretical results with examples of stochastic processes. The
discrete time framework is first addressed and then the continuous time with the construction
of Itô’s integral. The main properties that make martingales indispensable will be discussed:
Doob-Meyer decomposition, optimal stopping theorem, convergence in large time, etc.

2. Secondly, we will examine the link between the mean behaviour of specific families of stochastic
processes and solutions of PDEs (elliptic or parabolic type equations). This will allow us to
study, in particular, initial value problems for classical physics equations. We will take this
opportunity to describe the phenomena of bistability and metastability, which are all linked to
the escape problems of stochastic processes.

3. Asymptotic analysis plays an important role when physical systems involve stochastic processes
and will be the main theme of this last part of the course. The first case concerns small
noisy perturbations of dynamical systems. In this case, it is necessary to be able to control
the limiting behaviour when the noise intensity becomes small, using the principle of large
deviations (Sanov, Schilder, Freidlin-Ventzell). The second case concerns the time dependence
of noisy systems that admit a stationary regime: we are then interested in the ergodic theorems
that describe the behaviour in large time.

Random matrix theory and physics (S. Carrozza)
This course will provide an introduction to Random Matrix Theory (RMT) [1, 2, 3], with an emphasis
on some of its numerous applications to physics. RMT entered the world of physics through Wigner,
who had the insight to model the Hamiltonian of a quantum chaotic system as a large random Hermitian
matrix, which allowed him to exploit concentration phenomena to investigate its spectral properties.
We will start out by introducing basic ensembles of random matrices (Wigner and Wishart matrices,
Gaussian ensembles) and will investigate the limit distributions of their eigenvalues in the asymptotic
regime of large dimension (semi-circle law, Marchenko-Pastur distribution). We will show that those
ensembles are subject to the phenomenon of eigenvalue repulsion, which plays an important role in
Wigner’s analysis of quantum chaotic systems. Still in the context of quantum chaos, we will then discuss
a threefold classification of random Hamiltonians in terms of their symmetries (Wigner’s threefold
way), as well as a tenfold generalization due to Altland-Zirnbauer [4] (which is in correspondence with
the classificaltion of associative division super-algebras). To conclude this part, we will discuss some
applications of RMT to quantum information [5], such as the computation of the typical entanglement
spectrum of a random bipartite pure state (whose entanglement entropy is captured by the celebrated
Page curve). In the second part of the course, we will focus on matrix models, which can be inter-
preted as formal non-Gaussian random matrix distributions (or, in theoretical physics language, as
perturbative matrix field theories in zero dimen- sion). We will explain how the (formal) moments of
such a distribution can be understood as generating functions of objects known as combinatorial maps
(or ribbon diagrams), which are nothing but discrete surfaces [6, 7]. We will then explain how this
expansion can be re-organized as a so-called topological expansion in which the genus of a given discrete
surface determines the order of its contribution in the (formal) parameter N1 , N being the size of the
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matrix. After briefly discussing the original context in which this expansion was discovered by ’t Hooft
(large N quantum field theory, and more specifically SU(N) quantum chromodynamics), we will give a
more detailed account of its applications to combinatorics and statistical physics [8]. From a purely
combinatorial perspective, the large N expansion allows to solve asymptotic enumeration problems for
combinatorial maps. From a more physical perspec- tive, the same approach allows to generate and
solve statistical physics models on random surfaces. We will discuss two such examples: a random
surface model which can be understood as pure Euclidean 2d quantum gravity; and the Ising model on a
random surface. In the third part of the course, we will provide an introduction to free probability. This
is an operator-algebraic formalism which fits in the general framework of noncommutative probability,
and which relies on a particular gen- eralization of the classical notion of independence known as
free independence. Random matrices turn out to be asymptotically free, which means that their
asymptotic properties are well-captured by the abstract framework of free probability. The tools of free
probability are particularly useful to generate and describe more complicated RMT ensembles than
the ones studied in the first part of the course. We will adopt an approach to free probability rooted
in combinatorics [9], and illustrate the power of this formalism with concrete examples drawn from
mathematical physics. Finally, time-permitting, we will provide a quick overview of the emerging theory
of random tensors, which gener- alizes aspects of RMT discussed in this course to higher order tensors [10].

Random walk on graphs (A. Rousselle)
Random walks on graphs are widely used in all sciences to describe a great variety of phenomena
where dynamical random processes are affected by topology and represents at the same time a basic
model of diffusion phenomena and nondeterministic motion. This lecture presents general random
walks on (weighted, finite or infinite, deterministic or random) graphs. This teaching draws its main
ideas from physical phenomena, since it links random walks to electrical networks by interpreting
the return probabilities for the walk as potential for the associated electrical networks. In particular,
the characterization of the recurrence/transience property of a graph can be intepreted in terms of
resistance to infinity. This enables us to give robust criteria for recurrence/transience on infinite graphs.

1. In this course, we will first concentrate on random walks on deterministic graphs. This will
enable us to define the various mathematical tools used in a fairly simple context, in particular
recurrence and transience. An important result concerning random walks which is called
the classical invariance principle asserts that the distributions of a broad class of continuous
functionals of processes constructed from a rescaled random walk converge to the distributions
of these functionals of a Brownian motion.

2. Secondly, we introduce more general models by considering random environments (random
walks on random graphs). Physicists have been mainly interested in graphs as models of complex
systems. Indeed, these struc- tures are very useful to describe inhomogeneous structures such as
disordered materials, glasses, polymers, biomolecules as well as electric circuits, communication
networks, statistical models of algorithms, and applica- tions of statistical mechanics to different
(non physical) systems. Therefore making the graph random broadens the scope of the
mathematical results. We address the concepts of almost sure reccurence and transience,
annealed and quenched invariance principles,...

3. Finally we introduce the so-called Maximal Entropy Random Walk (MERW) whose transition
probabilities have been chosen to maximise entropy. The properties of this biased random walk
make it particularly useful in analysis of complex networks. We begin by studying the case of a
finite connected graph and continue with general MERW, MERW with energy constrains,...
Asymptotic results (principles of invariance and large deviations) are also discussed.
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8. Dissertation M1

The students are required to choose a supervisor and a topic in October and to work on the
project under their guidance throughout academic year. Depending on the number of students,
the project may need to be completed in pairs.

The completed work must be summarized in a dissertation, which should be submitted by May.

The general rules for the dissertation are the following:

1. a maximum of 25 pages in TeX,
2. it should not be a direct rephrasing of some chapter of a book,
3. it should contain some personal and detailed take on a specific proof or computation.

Extra material can be included in the appendix without limitation on the number of pages, but
won’t be evaluated.

The dissertation must be submitted by the deadline to one of the coordinators and will be
evaluated by the supervisor.

The guidelines for evaluation are the following: understanding of the material, quality of the
writing, originality in the treatment of the topic, engagement of the student.

The assessment of the supervisor takes into account the work done by the student during the
year and the quality of the dissertation.

All dissertations will be checked using plagiarism detection software. In the case of evident
plagiarism the mark will be zero.

It is not possible to retake the evaluation of the dissertation in the second session.

9. Dissertation M2

The students are required to choose a supervisor and a topic during the month of October and
to work on the project under the guidance of the supervisor during the whole academic year.
For more details, please contact the M2 coordinator.

10. Exams

The exams of the first semester take place in January, those of the second semester in May, see
the calendar above. Exams are typically written tests lasting two to three hours.

For the course “Computational methods in mathematical physics” there is also a partial exami-
nation during the semester which counts towards 1/3 of the total grade.

Marks and compensation. Possible outcomes of an exam are a mark between 0 and 20 or
DEF (défaillant). A course is passed if the mark is greater or equal than 10. DEF is attributed
to a student that is absent at the final exam, or to a student that is absent at the partial exam
and does not have an official justification. Students that are absent at the partial exam but
have an official justification will be given a zero mark, unless an extra session is organised, at
the discretion of the teacher.

If a student has one or more exam scores below 10 during a semester but achieves an overall
average of 10 or higher, the lower scores will be validated under the “compensation” system.
Exams are also validated by compensation if the average of the marks of the year is greater
or equal to 10. The marks of the exams validated by compensation cannot be improved by
retaking the exams later.

If an exam is marked DEF then no course in that semester can be validated by compensation.
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Exams that are not passed at the first attempt and are not validated by compensation can be
retaken in the second session in June.

Official rules. The general rules for the exams are detailed in the official document “Référentiel
commun des études – Université Bourgogne Europe”, available here:
ube.fr/wp-content/uploads/ODF_referentiel-etudes-lmd.pdf

11. Repeating the M1

Because the Master receives several outstanding applications each year and the number of
available places is limited, students that fail the first year in general will not be allowed to
repeat it. Only exceptional circumstances will be considered.

Students that have failed the second session of exams in June and wish to repeat the year should
address their application to the coordinators within one week of the publication of the results of
the second session.

The students readmitted to the M1 will not benefit from a scholarship.

12. F.A.Q.

I have a mixed background in mathematics/physics/other subject. Do I have any chance to be
accepted in the Master?
As long as you have a background in mathematics or physics, even if you studied other topics,
you have a chance to be selected. We cannot say anything in advance however, the only way to
know is to apply and let the admission committee examine your dossier.

How many recommendation letters should I attach to my application? Are they compulsory?
Recommendation letters are not required, but they can be attached to the application or sent
to math4phys@ube.fr if one wishes so.

I have been accepted to the master, what should I do?
You will receive instructions from the administration about the procedure to register and other
practical matters.

When should I confirm my participation to the master?
We suggest you confirm your participation to (or your withdrawal from) the master as soon as
possible, to quickly advance the registration procedures. The formal deadline is in the beginning
of September. If you are offered a scholarship you should confirm your participation within two
weeks of the offer.

At which stage can I apply for a scholarship?
You will not need to apply specifically for a scholarship, if you are accepted at the Master you
will be automatically considered for the scholarship.

How many students will be funded?
The number of available scholarships depends on annual funding, which may vary.

What are the requirements for the scholarships?
The selection is based on academic merit, no other criteria are considered.

What is included in a scholarship?
The scholarships are around 550 euros per month. Tuition fees are not included.
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What is an estimate of the cost of life for a student in Dijon?
As an estimate, lodging is around 200 euros/month. Tuition fee is around 240 euros/yr and
there is an extra compulsory contribution for ’student life’ of 95 euros/yr.

When will scholarship recipients be announced?
Depending on the type of scholarship (we have different sources of financing), recipients will be
announced in the months of July-August-September.

Where can I find other sources of scholarships?
Unfortunately we are not aware of other sources of funding. We advise international students to
enquire at their own institutions for exchanges programmes with France or other funding to
study abroad.

Is it possible to work part-time while following the master?
Due to the intensive course schedule, we do not recommend working while enrolled in the
program.

Do I have to propose a subject for the dissertation or do I have to choose it from a list?
Usually several topics are proposed by the supervisors by the end of September. We encourage
the students to discuss the topics with the supervisors and finalise their choice during the month
of October.

I would like to have some material to study during the summer to be more prepared for the
beginning of the semester.
At the moment we don’t have a global reading list for the summer for the whole master. Students
might contact directly the teachers to ask for preliminary material.

Appendix A. Past thematic courses

We collect here the courses provided in the framework of the past thematic years.

A.1. Thematic courses 2024-25.

For the year 2024-25 the theme was “Introduction to quantum topology”. We proposed three
courses. The first course gives the mathematical background for the object of study in quantum
topology, i.e. low-dimensional manifolds (mainly 3-manifolds, including knots and links). The
second course is an introduction to quantum algebra, and presents the algebraic structures
underlying the construction of quantum invariants. The last and third course will provide
examples of quantum invariants of 3-manifolds, and will consider their extensions to TQFTs
(“Topological Quantum Field Theories”).

An introduction to low-dimensional topology (G. Massuyeau)
Low-dimensional topology is characterized by its object of study, namely manifolds of “low” dimensions
(no more than 4). In this introductory course, we will start with a short review of the classification of
surfaces. Next, we will give an introduction to knots, links and tangles, which constitute special classes
of 3-manifolds. In particular, we will define and study braid groups. Finally, we will see how to present
arbitrary 3-manifolds via handle decompositions and surgery techniques. Although our approach will
be mostly based on the study of examples, we shall also need some basic tools of algebraic topology
and/or differential topology.
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Tensor categories and quantum groups (P. Schauenberg)
Tensor categories and quantum groups are at the heart of a plethora of applications of algebraic
methods to mathematical physics and topology often summarized under the moniker quantum algebra.
Key words include topological quantum field theory, conformal field theory, the theory of quantum
computation, integrable systems, deformation quantization, and noncommutative geometry. The lecture
will give an introduction to the basic notions in the theory of tensor categories and important additional
structures such as braidings and duality, an introduction to quantum groups (Hopf algebras) whose
representation theory gives important examples of such structures, and discuss important constructions,
notably the Drinfeld center/double and quantized enveloping algebras.

An introduction to topological quantum field theories (L. Woike, R. Detcherry)
The notion of a topological quantum field theory axiomatizes a certain type of quantum field theory for
which the quantities associated to a region of spacetime only depend on the ‘shape’ of the spacetime.
In addition to their physical origin, topological quantum field theories are also a subject of purely
mathematical interest, and this course will be focused on the mathematical aspects. In the first half of
the course, we will introduce the general axiomatics of topological quantum field theories compactly as
symmetric monoidal functors from the cobordism category to the category of vector spaces. Then we
will focus on the classification of two-dimensional topological field theories by commutative Frobenius
algebras. In the second half, we build a class of examples of three-dimensional topological quantum
field theories, the so-called Dijkgraaf–Witten theories, via the finite path integral quantization of a dis-
crete gauge theory. As an outlook, we will discuss aspects of the Reshetikhin–Turaev construction of
topological field theories from modular fusion categories.
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